Leakage Resilient One-Way Functions: The Auxiliary-Input Setting

نویسنده

  • Ilan Komargodski
چکیده

Most cryptographic schemes are designed in a model where perfect secrecy of the secret key is assumed. In most physical implementations, however, some form of information leakage is inherent and unavoidable. To deal with this, a flurry of works showed how to construct basic cryptographic primitives that are resilient to various forms of leakage. Dodis et al. (FOCS ’10) formalized and constructed leakage resilient one-way functions. These are one-way functions f such that given a random image f(x) and leakage g(x) it is still hard to invert f(x). Based on any one-way function, Dodis et al. constructed such a one-way function that is leakage resilient assuming that an attacker can leak any lossy function g of the input. In this work we consider the problem of constructing leakage resilient one-way functions that are secure with respect to arbitrary computationally hiding leakage (a.k.a auxiliary-input). We consider both types of leakage — selective and adaptive — and prove various possibility and impossibility results. On the negative side, we show that if the leakage is an adaptively-chosen arbitrary one-way function, then it is impossible to construct leakage resilient one-way functions. The latter is proved both in the random oracle model (without any further assumptions) and in the standard model based on a strong vector-variant of DDH. On the positive side, we observe that when the leakage is chosen ahead of time, there are leakage resilient one-way functions based on a variety of assumption. ∗Weizmann Institute of Science, Israel. Email: [email protected]. Supported in part by a Levzion fellowship, by grants from the Israel Science Foundation grant no. 1255/12, BSF and from the I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation (grant no. 4/11)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Encryption Schemes with Post-Challenge Auxiliary Inputs

In this paper, we tackle the open problem of proposing a leakage-resilience encryption model that can capture leakage from both the secret key owner and the encryptor, in the auxiliary input model. Existing models usually do not allow adversaries to query more leakage information after seeing the challenge ciphertext of the security games. On one hand, side-channel attacks on the random factor ...

متن کامل

Leakage Resilient Authenticated Key Exchange Secure in the Auxiliary Input Model

Authenticated key exchange (AKE) protocols allow two parties communicating over an insecure network to establish a common secret key. They are among the most widely used cryptographic protocols in practice. In order to resist key-leakage attacks, several leakage resilient AKE protocols have been proposed recently in the bounded leakage model. In this paper, we initiate the study on leakage resi...

متن کامل

Circular and Leakage Resilient Public-Key Encryption under Subgroup Indistinguishability - (or: Quadratic Residuosity Strikes Back)

The main results of this work are new public-key encryption schemes that, under the quadratic residuosity (QR) assumption (or Paillier’s decisional composite residuosity (DCR) assumption), achieve key-dependent message security as well as high resilience to secret key leakage and high resilience to the presence of auxiliary input information. In particular, under what we call the subgroup indis...

متن کامل

Continuous Leakage Resilient Lossy Trapdoor Functions

Lossy trapdoor functions (LTFs) were first introduced by Peikert and Waters (STOC’08). Since their introduction, lossy trapdoor functions have found numerous applications. They can be used as tools to construct important cryptographic primitives such as injective one-way trapdoor functions, chosen-ciphertext-secure public key encryptions, deterministic encryptions, et al. In this paper, we focu...

متن کامل

Leaky Pseudo-Entropy Functions

Pseudo-random functions (PRFs) introduced by Goldwasser, Goldreich, and Micali (FOCS 1984), are one of the most important building blocks in cryptography. A PRF family is a family of seeded functions {fs}, with the property that no efficient adversary can tell the difference between getting oracle access to a random PRF function fs, and getting oracle access to a truly random function. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016